These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Enhanced Dissipation of Triazole and Multiclass Pesticide Residues on Grapes after Foliar Application of Grapevine-Associated Bacillus Species.
    Author: Salunkhe VP, Sawant IS, Banerjee K, Wadkar PN, Sawant SD.
    Journal: J Agric Food Chem; 2015 Dec 23; 63(50):10736-46. PubMed ID: 26492206.
    Abstract:
    Disease management in vineyards with fungicides sometimes results in undesirable residue accumulations in grapes at harvest. Bioaugmentation of the grape fructosphere can be a useful approach for enhancing the degradation rate and reducing the residues to safe levels. This paper reports the in vitro and in vivo biodegradation of three triazole fungicides commonly used in Indian vineyards, by Bacillus strains, namely, DR-39, CS-126, TL-171, and TS-204, which were earlier found to enhance the dissipation rate of profenophos and carbendazim. The strains utilized the triazoles as carbon source and enhanced their in vitro rate of degradation. Myclobutanil, tetraconazole, and flusilazole were applied in separate vineyard plots at field doses of 0.40 g L(-1), 0.75 mL L(-1), and 0.125 mL L(-1), respectively. Residue analysis of field samples from the treated fields reflected 87.38 and >99% degradations of myclobutanil and tetraconazole, respectively, by the strain DR-39, and 90.82% degradation of flusilazole by the strain CS-126 after 15-20 days of treatment. In the respective controls, the corresponding percent degradations were 72.07, 58.88, and 54.28, respectively. These Bacillus strains could also simultaneously degrade the residues of profenofos, carbendazim, and tetraconazole on the grape berries and can be useful in multiclass pesticide residue biodegradation.
    [Abstract] [Full Text] [Related] [New Search]