These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Rapid structural characterization of in vivo and in vitro metabolites of tinoridine using UHPLC-QTOF-MS/MS and in silico toxicological screening of its metabolites.
    Author: Kalariya PD, Patel PN, Kavya P, Sharma M, Garg P, Srinivas R, Talluri MV.
    Journal: J Mass Spectrom; 2015 Nov; 50(11):1222-33. PubMed ID: 26505767.
    Abstract:
    Tinoridine is a nonsteroidal anti-inflammatory drug and also has potent radical scavenger and antiperoxidative activity. However, metabolism of tinoridine has not been thoroughly investigated. To identify in vivo metabolites, the drug was administered to Sprague-Dawley rats (n = 5) at a dose of 20 mg kg(-1), and blood, urine and feces were collected at different time points up to 24 h. In vitro metabolism was delved by incubating the drug with rat liver microsomes and human liver microsomes. The metabolites were enriched by optimized sample preparation involving protein precipitation using acetonitrile, followed by solid-phase extraction. Data processes were carried out using multiple mass defects filters to eliminate false-positive ions. A total of 11 metabolites have been identified in urine samples including hydroxyl, dealkylated, acetylated and glucuronide metabolites; among them, some were also observed in plasma and feces samples. Only two major metabolites were formed using liver microsomal incubations. These metabolites were also observed in vivo. All the 11 metabolites, which are hitherto unknown and novel, were characterized by using ultrahigh-performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry in combination with accurate mass measurements. Finally, in silico toxicological screening of all metabolites was evaluated, and two metabolites were proposed to show a certain degree of lung or liver toxicity.
    [Abstract] [Full Text] [Related] [New Search]