These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Geochemical background and ecological risk of heavy metals in surface sediments from the west Zhoushan Fishing Ground of East China Sea.
    Author: Xu G, Liu J, Pei S, Hu G, Kong X.
    Journal: Environ Sci Pollut Res Int; 2015 Dec; 22(24):20283-94. PubMed ID: 26507725.
    Abstract:
    Surface sediment grain size as well as the spatial distribution, pollution status, and source identification of heavy metals in the west Zhoushan Fishing Ground (ZFG) of the East China Sea were analyzed to study the geochemical background concentrations of heavy metals and to assess their potential ecological risk. Our results show that surface sediments in the eastern part of study area were mainly composed of sand-sized components. Spatial distributions of heavy metals were mainly controlled by grain size and terrigenous materials, and their concentrations in the coarsest grain sediments formed primarily during the Holocene transgressive period could represent the element background values of our study area. Contamination factor suggests that there was no pollution of Pb, Zn, and Cr generally in our study area and slight pollution of Cu, Cd, and As (especially Cu) at some stations. In addition, ecological harm coefficient indicates that the ecological risk of each heavy metal, except for Cd, at two stations was low as well. These results are consistent with the pollution load index and ecological risk index, which suggest both the overall level of pollution and the overall ecological risk of six studied metals in sediment were relatively low in our study area. Enrichment factor indicates that the heavy metals came mostly from the natural source. Summarily, the quality level of sediment in our study area was relatively good, and heavy metals in sediments could not exert threat to aquatic lives in the ZFG until now.
    [Abstract] [Full Text] [Related] [New Search]