These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dysregulation of glucose transport and transporters in perfused hearts of genetically obese (fa/fa) rats.
    Author: Zaninetti D, Greco-Perotto R, Assimacopoulos-Jeannet F, Jeanrenaud B.
    Journal: Diabetologia; 1989 Jan; 32(1):56-60. PubMed ID: 2651189.
    Abstract:
    The regulation of glucose transport in normal and insulin-resistant obese rat hearts have been studied by measuring glucose transport via the efflux of labelled 3-0-methyl-D-glucose. Glucose transporters in obese rat hearts were also investigated using the labelled cytochalasin B-binding assay. Basal, and insulin- or increasing workload-induced stimulation of glucose transport was decreased in obese rat hearts compared to those of normal ones. Total number of glucose transporters (plasma membrane plus microsomal ones) was about half that previously reported for normal rat hearts. Insulin or workload favoured the translocation of glucose transporters from an intercellular pool (microsomes) to the plasma membrane, as they do in normal rats. Due to the measured decrease in total number of transporters of obese rat hearts, those present in the plasma membrane (under basal conditions, or following stimulation by insulin or workload) were less than those previously found in normal rat hearts tested under identical conditions. In obese rat hearts, regulation of plasma membrane transporters was perturbed. The Hill coefficient (an index of positive cooperativity amongst glucose transporters) was paradoxically decreased by insulin while leaving affinity values unaltered. The Hill coefficient was unaltered by workload, although the affinity values were increased compared to respective controls. To sum up, obese rat hearts have decreased total transporter number, and although the two stimuli studied favour the translocation of available transporters, they fail to "activate" them adequately once present in the plasma membrane.
    [Abstract] [Full Text] [Related] [New Search]