These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression.
    Author: Liu WX, Wang J, Xie ZM, Xu N, Zhang GF, Jia M, Zhou ZQ, Hashimoto K, Yang JJ.
    Journal: Psychopharmacology (Berl); 2016 Feb; 233(3):405-15. PubMed ID: 26514555.
    Abstract:
    RATIONALE: Growing evidence suggests that downregulated clearance of glutamate and signaling pathways involving brain-derived neurotrophic factor (BDNF) and its receptor TrkB play a role in morphological changes in the hippocampus of depressed patients. The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine is the most attractive antidepressant, although precise mechanisms are unknown. OBJECTIVE: In this study, we examined whether hippocampal BDNF-TrkB signaling underlies the antidepressant effects of ketamine via upregulating glutamate transporter 1 (GLT-1) in rats, subjected to the chronic unpredictable stress (CUS) for 42 days. The rats received a single injection of ketamine (10 mg/kg, i.p.) and/or a TrkB inhibitor, K252a (1 μl, 2 mM, intracerebroventicular (i.c.v.)) on day 43. Behavioral tests and brain sample collection were evaluated 24 h later. RESULTS: The CUS-exposed rats exhibited depression- and anxiety-like behaviors; decreased number of glial fibrillary acidic protein (GFAP)-positive (but not NeuN-positive) cells in the dentate gyrus (DG), CA1, and CA3 areas; increased number of cleaved caspase-3-positive astrocytes; reduced spine density; lower ratio of Bcl2 to Bax; and decreased levels of BDNF, phosphorylated cAMP response element binging protein (CREB), GLT-1, and postsynaptic density 95 (PSD95) proteins in the hippocampus. Ketamine alleviated the CUS-induced abnormalities. The effects of ketamine were antagonized by pretreatment with K252a. CONCLUSIONS: Our findings suggest that regulation of GLT-1 on astrocytes, responsible for 90 % of glutamate reuptake from the synapse, through BDNF-TrkB signaling is involved in mediation of the therapeutic effects of ketamine on behavioral abnormalities and morphological changes in the hippocampus of the CUS-exposed rats.
    [Abstract] [Full Text] [Related] [New Search]