These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Identification of a novel 11β-HSD1 inhibitor from a high-throughput screen of natural product extracts. Author: Park SB, Park JS, Jung WH, Park A, Jo SR, Kim HY, Dal Rhee S, Ryu SY, Jeong HG, Park S, Lee H, Kim KY. Journal: Pharmacol Res; 2015 Dec; 102():245-53. PubMed ID: 26515507. Abstract: Selective inhibitors of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) have considerable potential as a treatment for metabolic syndrome including type 2 diabetes mellitus and obesity. To identify 11β-HSD1 inhibitors, we conducted high-throughput screening (HTS) of active natural product extracts from the Korea Chemical Bank, including Tanshinone I, Tanshinone IIA, and flavanone derivatives, and 2- and 3-phenyl-4H-chromen-4-one. Then Tanshinone IIA and its derivatives were targeted for the development of a lead compound according to the HTS results. However, the mechanism for anti-adipogenic effect through 11β-HSD1 enzyme inhibition by Tanshinone IIA is not clear. Tanshinone IIA (2a) concentration-dependently inhibited 11β-HSD1 activity in human and mouse 11β-HSD1 overexpressed cells and 3T3-L1 adipocytes. Tanshinone IIA (2a) also inhibited 11β-HSD1 enzyme activities in murine liver and fats. Furthermore, Tanshinone IIA (2a)-suppressed adipocyte differentiation of cortisone-induced adipogenesis in 3T3-L1 cells was associated with the suppression of the cortisone-induced adipogenesis-specific markers mRNA and protein expression. In 3T3-L1 preadipocytes, Tanshinone IIA (2a)-inhibited cortisone induced reactive oxygen species formation in a concentration-dependent manner. Thus, these results support the therapeutic potential of Tanshinone IIA (2a) as a 11β-HSD1 inhibitor in metabolic syndrome patients.[Abstract] [Full Text] [Related] [New Search]