These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrosynthesis and binding properties of molecularly imprinted poly-o-phenylenediamine as artificial antibodies for electroanalysis of myoglobin. Author: Shumyantseva VV, Bulko TV, Sigolaeva LV, Kuzikov AV, Shatskaya MA, Archakov AI. Journal: Dokl Biochem Biophys; 2015; 464():275-8. PubMed ID: 26518546. Abstract: Molecularly imprinted poly-o-phenylenediamine with template myoglobin molecules (i.e., polymeric antibodies to myoglobin, molecularly imprinted polymer, MIP) was synthesized via electropolymerization. Electropolymerization, washing, and the interaction of the polymeric antibodies with myoglobin was examined by square wave voltammetry and microgravimetry. The analysis of myoglobin was carried out through direct electrochemical detection of the reduction peak of Fe(3+) of the hemeprotein on screen-printed graphite electrodes modified by the MIP. According to the electrochemical analysis, MIP surfaces demonstrated remarkably higher ability to bind the protein compared to that of surfaces prepared by the same route under the same conditions but in the absence of myoglobin (surfaces of the non-imprinted polymer, NIP). The imprinting factor I max(MIP)/I max(NIP) was found to be 2-4. The equilibrium dissociation constant K d of the interaction of myoglobin with MIP electrodes was evaluated as (2.4 ± 0.5) × 10(-8) M. The lower detection limit of myoglobin by a MIP sensor was determined as 0.5 × 10(-9) M, the range of detectable concentrations being 10(-9)-10(-5) M.[Abstract] [Full Text] [Related] [New Search]