These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Monitoring Smad Activity In Vivo Using the Xenopus Model System.
    Author: Montagner M, Martello G, Piccolo S.
    Journal: Methods Mol Biol; 2016; 1344():245-59. PubMed ID: 26520129.
    Abstract:
    The embryo of the African clawed frog Xenopus laevis plays a central role in the field of cell and developmental biology. One of the strengths of Xenopus as model system lies in the high degree of conservation between amphibians and mammals in the molecular mechanisms controlling tissue patterning and differentiation. As such, many signaling cascades were first investigated in frog embryos and then confirmed in mouse and/or human cells. The TGF-β signaling cascade greatly benefited from this model system. Here we review the overall logic and experimental planning for studying Smad activity in vivo in the context of Xenopus embryonic development, and provide a guide for the interpretation of the results.
    [Abstract] [Full Text] [Related] [New Search]