These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Propionate supplementation improves nitrogen use by reducing urea flux in sheep.
    Author: Agarwal U, Hu Q, Bequette BJ.
    Journal: J Anim Sci; 2015 Oct; 93(10):4883-90. PubMed ID: 26523581.
    Abstract:
    Feeding and postruminal infusion of propionate is known to increase N retention in ruminants. Our aim was to determine the role of rumen propionate on urea N recycling and gluconeogenesis in growing sheep. In Exp. 1, wether sheep ( = 6; 32.5 ± 3.57 kg BW) fitted with a rumen cannula were fed to 1.8 × ME requirement a concentrate-type ration (172 g CP/kg DM and 10.4 MJ ME/kg DM) and continuously infused into the rumen with isoenergetic (10% of dietary ME intake) solutions of either sodium acetate (control) or sodium propionate for 9-d periods in a crossover design. In Exp. 2, a different group of wether sheep ( = 5; 33.6 ± 3.70 kg BW) fitted with a rumen cannula were fed, on an isonitrogenous basis, either a control (151 g CP/kg DM and 8.4 MJ ME/kg DM) or sodium propionate-supplemented (139 g CP/kg DM and 8.9 MJ ME/kg DM) diet at 2-h intervals. [N] urea was continuously infused intravenously for the last 5 d of each period, and total urine was collected by vacuum and feces were collected by a harness bag. Over the last 12 h, [C]glucose was continuously infused intravenously and hourly blood samples were collected during the last 5 h. Propionate treatments increased ( < 0.001) the proportion of rumen propionate in both experiments. In Exp. 1, N retention was not affected by propionate infusion as compared with isoenergetic acetate. There was no effect on urea entry (synthesis) rate (UER) in Exp. 1; however, sodium propionate infusion tended ( < 0.1) to increase urinary urea elimination (UUE). In Exp. 2, feeding propionate increased ( < 0.01) N retention by 0.8 g N/d. In addition, UER was reduced by approximately 2 g urea N/d, leading to a reduction ( < 0.05) in UUE (7.0 vs. 6.2 g urea N/d). Between the 2 experiments, the proportion of UER recycled to the gut was greater with the forage-type diet in Exp. 2 (approximately 60%) compared with the concentrate-type diet in Exp. 1 (approximately 40%), although urea N fluxes across the gut remained unchanged in both experiments. In Exp. 1, glucose entry and gluconeogenesis were greater ( < 0.05) and plasma glucose tended ( < 0.1) to be greater with sodium propionate infusion than with sodium acetate infusion, but there was no difference in Cori cycling. In Exp. 2, glucose entry, gluconeogenesis, Cori cycling, and plasma glucose increased ( < 0.05) with dietary propionate. Our studies indicate that propionate inclusion in feed, but not continuous infusion in to the rumen, improves N utilization in growing sheep. The propionate effect is likely mediated by providing additional precursors for gluconeogenesis.
    [Abstract] [Full Text] [Related] [New Search]