These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Effects of Posthemorrhagic Ventricular Dilatation in the Preterm Infant on Brain Volumes and White Matter Diffusion Variables at Term-Equivalent Age.
    Author: Brouwer MJ, de Vries LS, Kersbergen KJ, van der Aa NE, Brouwer AJ, Viergever MA, Išgum I, Han KS, Groenendaal F, Benders MJNL.
    Journal: J Pediatr; 2016 Jan; 168():41-49.e1. PubMed ID: 26526364.
    Abstract:
    OBJECTIVE: To evaluate the differential impact of germinal matrix-intraventricular hemorrhage (GMH-IVH) and posthemorrhagic ventricular dilatation (PHVD) on brain and cerebrospinal fluid (CSF) volumes and diffusion variables in preterm born infants at term-equivalent age (TEA). STUDY DESIGN: Nineteen infants (gestational age <31 weeks) with GMH-IVH grade II-III according to Papile et al and subsequent PHVD requiring intervention were matched against 19 controls with GMH-IVH grade II but no PHVD and 19 controls without GMH-IVH. Outcome variables on magnetic resonance imaging (MRI) including diffusion weighted imaging at TEA were volumes of white matter, cortical gray matter, deep gray matter, brainstem, cerebellum, ventricles, extracerebral CSF, total brain tissue, and intracranial volume (ICV), as well as white matter and cerebellar apparent diffusion coefficients (ADCs). Effects of GMH-IVH and PHVD on TEA-MRI measurements were evaluated using multivariable regression analysis. Brain and CSF volumes were adjusted for ICV to account for differences in bodyweight at TEA-MRI and ICV between cases and controls. RESULTS: PHVD was independently associated with volumes of deep gray matter (β [95% CI]: -1.4 cc [-2.3; -.5]), cerebellum (-2.7 cc [-3.8; -1.6]), ventricles (+12.7 cc [7.9; 17.4]), and extracerebral CSF (-11.2 cc [-19.2; -3.3]), and with ADC values in occipital, parieto-occipital, and parietal white matter (β: +.066-.119×10(-3) mm(2)/s) on TEA-MRI (P < .05). No associations were found between GMH-IVH grade II-III and brain and CSF volumes or ADC values at TEA. CONCLUSIONS: PHVD was negatively related to deep gray matter and cerebellar volumes and positively to white matter ADC values on TEA-MRI, despite early intervention for PHVD in the majority of the infants. These relationships were not observed for GMH-IVH.
    [Abstract] [Full Text] [Related] [New Search]