These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Glioblastoma Eradication Following Immune Checkpoint Blockade in an Orthotopic, Immunocompetent Model.
    Author: Reardon DA, Gokhale PC, Klein SR, Ligon KL, Rodig SJ, Ramkissoon SH, Jones KL, Conway AS, Liao X, Zhou J, Wen PY, Van Den Abbeele AD, Hodi FS, Qin L, Kohl NE, Sharpe AH, Dranoff G, Freeman GJ.
    Journal: Cancer Immunol Res; 2016 Feb; 4(2):124-35. PubMed ID: 26546453.
    Abstract:
    Inhibition of immune checkpoints, including cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and its ligand PD-L1, has demonstrated exciting and durable remissions across a spectrum of malignancies. Combinatorial regimens blocking complementary immune checkpoints further enhance the therapeutic benefit. The activity of these agents for patients with glioblastoma, a generally lethal primary brain tumor associated with significant systemic and microenvironmental immunosuppression, is not known. We therefore systematically evaluated the antitumor efficacy of murine antibodies targeting a broad panel of immune checkpoint molecules, including CTLA-4, PD-1, PD-L1, and PD-L2 when administered as single-agent therapy and in combinatorial regimens against an orthotopic, immunocompetent murine glioblastoma model. In these experiments, we observed long-term tumor-free survival following single-agent anti-PD-1, anti-PD-L1, or anti-CTLA-4 therapy in 50%, 20%, and 15% of treated animals, respectively. Combination therapy of anti-CTLA-4 plus anti-PD-1 cured 75% of the animals, even against advanced, later-stage tumors. In long-term survivors, tumor growth was not seen upon intracranial tumor rechallenge, suggesting that tumor-specific immune memory responses were generated. Inhibitory immune checkpoint blockade quantitatively increased activated CD8(+) and natural killer cells and decreased suppressive immune cells in the tumor microenvironment and draining cervical lymph nodes. Our results support prioritizing the clinical evaluation of PD-1, PD-L1, and CTLA-4 single-agent targeted therapy as well as combination therapy of CTLA-4 plus PD-1 blockade for patients with glioblastoma.
    [Abstract] [Full Text] [Related] [New Search]