These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolic engineering of Corynebacterium glutamicum for the de novo production of ethylene glycol from glucose.
    Author: Chen Z, Huang J, Wu Y, Liu D.
    Journal: Metab Eng; 2016 Jan; 33():12-18. PubMed ID: 26556130.
    Abstract:
    Development of sustainable biological process for the production of bulk chemicals from renewable feedstock is an important goal of white biotechnology. Ethylene glycol (EG) is a large-volume commodity chemical with an annual production of over 20 million tons, and it is currently produced exclusively by petrochemical route. Herein, we report a novel biosynthetic route to produce EG from glucose by the extension of serine synthesis pathway of Corynebacterium glutamicum. The EG synthesis is achieved by the reduction of glycoaldehyde derived from serine. The transformation of serine to glycoaldehyde is catalyzed either by the sequential enzymatic deamination and decarboxylation or by the enzymatic decarboxylation and oxidation. We screened the corresponding enzymes and optimized the production strain by combinatorial optimization and metabolic engineering. The best engineered C. glutamicum strain is able to accumulate 3.5 g/L of EG with the yield of 0.25 mol/mol glucose in batch cultivation. This study lays the basis for developing an efficient biological process for EG production.
    [Abstract] [Full Text] [Related] [New Search]