These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Gene organization and structure of two transcriptional units from Methanococcus coding for ribosomal proteins and elongation factors.
    Author: Auer J, Lechner K, Böck A.
    Journal: Can J Microbiol; 1989 Jan; 35(1):200-4. PubMed ID: 2655852.
    Abstract:
    Two transcriptional units coding for ribosomal proteins and protein synthesis elongation factors in Methanococcus vannielii have been cloned and analysed in detail. They correspond to the "streptomycin operon" and "spectinomycin operon" of the Escherichia coli chromosome. The following general conclusions can be drawn from comparison of the nucleotide and the derived amino acid sequences of ribosomal proteins from Methanococcus with those from eubacteria and eukaryotes. (i) Ribosomal protein and elongation factor genes in Methanococcus are clustered in transcriptional units corresponding closely to E. coli ribosomal protein operons with respect to both gene composition and organization. (ii) These transcriptional units contain, in addition, a few open reading frames whose putative gene products share sequence similarity with eukaryotic 80S but not with eubacterial, ribosomal proteins. They may correspond to "additional" ribosomal proteins of the Methanococcus ribosome, there being no functional homologues in the eubacterial ribosome. (iii) Methanococcus ribosomal proteins and elongation factors almost exclusively exhibit a higher sequence similarity to eukaryotic 80S ribosomal proteins than to those of eubacteria. (iv) Many Methanococcus ribosomal proteins have a size intermediate between those of their eukaryotic and eubacterial homologues. These results are discussed in terms of a hypothesis which implies that the recent eubacterial ribosome developed by a "minimization" process from a more complex organelle and that the archaebacterial ribosome has maintained features of this ancestor.
    [Abstract] [Full Text] [Related] [New Search]