These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolism of 35S- and 14C-labeled propylthiouracil in a model in vitro system containing thyroid peroxidase. Author: Taurog A, Dorris ML, Guziec FS, Uetrecht JP. Journal: Endocrinology; 1989 Jun; 124(6):3030-7. PubMed ID: 2656249. Abstract: In previous communications we described an in vitro model system containing highly purified thyroid peroxidase (TPO) for studying the mechanism of inhibition of thyroid hormone biosynthesis by the antithyroid drugs, 6-propylthiouracil (PTU) and 1-methyl-2-mercaptoimidazole (MMI). We showed that inhibition of iodination of thyroglobulin in this system may be reversible or irreversible depending on the relative concentrations of iodide and drug and the TPO concentration. Metabolism of the drugs occurred under both conditions, but was more limited under irreversible conditions of inhibition. It was of interest to examine the nature of the drug metabolites associated with reversible and irreversible conditions of inhibition. For this purpose we have employed the 35S- and 14C-labeled drugs and a recently developed reverse phase HPLC procedure. Results of a similar study with MMI were reported in an earlier communication. In the present study we report our findings with PTU. Under conditions of reversible inhibition, PTU was readily metabolized and by 15 min was reduced to a few percent of the starting value. The earliest detectable metabolite with both [35S]- and [14C]PTU was the disulfide, which reached a peak in about 15 min and then slowly declined. Coincident with the decline in the disulfide was the appearance of more polar metabolites. In the case of [35S]PTU, these corresponded to sulfate/sulfite, PTU sulfonate, and a product tentatively identified as PTU sulfinate. The latter two were also observed as 14C-labeled metabolites produced from [14C]PTU. Two nonpolar desulfurated 14C-labeled metabolites were also observed. Surprisingly, these did not correspond to either propyluracil or propyldeoxyuracil, the anticipated most likely products of PTU desulfuration. The identity of these desulfurated metabolites of PTU in the TPO model system remains to be determined. Under conditions of irreversible inhibition of iodination, a relatively small fraction of PTU was metabolized. PTU disulfide was, again, the earliest detectable metabolite, and it declined with time. However, only small amounts of other metabolites were observed, in contrast to the results obtained under conditions of reversible inhibition of iodination. As in the case of MMI, the difference in metabolic pattern between reversible and irreversible conditions is primarily related to the rapid inactivation of TPO that occurs under irreversible conditions. In general, the metabolism of PTU by the TPO model system resembled that previously observed with MMI. With both drugs, the disulfide was the earliest detectable metabolite, and under conditions of reversible inhibition of iodination, an appreciable fraction of the sulfur was oxidized as far as sulfate/sulfite.(ABSTRACT TRUNCATED AT 400 WORDS)[Abstract] [Full Text] [Related] [New Search]