These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tangeretin derivative, 5-acetyloxy-6,7,8,4'-tetramethoxyflavone induces G2/M arrest, apoptosis and autophagy in human non-small cell lung cancer cells in vitro and in vivo. Author: Li YR, Li S, Ho CT, Chang YH, Tan KT, Chung TW, Wang BY, Chen YK, Lin CC. Journal: Cancer Biol Ther; 2016; 17(1):48-64. PubMed ID: 26569090. Abstract: Tangeretin, a major phytochemicals in tangerine peels--an important Chinese herb, has been found to have anti-carcinogenic properties. To improve bioavailability and increase potency of tangeretin, its derivative, 5-acetyloxy-6,7,8,4'-tetramethoxyflavone (5-AcTMF), has been synthesized and shown potent inhibition of proliferation activity against human breast and leukemia cancer cell lines. In this study, we have further investigated the anticancer effects of 5-AcTMF on CL1-5 non-small cell lung cancer cells (NSCLC) both in vitro and in vivo and demonstrated that 5-AcTMF effectively inhibited cancer cell proliferation, induced G2/M-phase arrest associated with cdc2 and CDC25c and increased in the apoptotic cells associated with caspase activation, down regulation of Bcl-2, XIAP and Survivn, inducing release of cytochrome c into the cytosol and disruption of mitochondrial membrane potential. We also found that 5-AcTMF treatment of CL1-5 activated autophagy, indicated by triggered autophagosome formation and increased LC3-II levels and formation of LC3 puncta. Moreover, we also found that 5-AcTMF lowered phophoatidylinositol 3-kinase/AKT/mTOR signaling pathway. Over-expression of AKT by AKT cDNA transfection decreased 5-AcTMF mediated apoptosis and autophagy, supporting the induction of apoptosis and autophagy by inhibition of AKT pathway. In an animal study, 5-AcTMF effectively delayed tumor growth in a nude mouse model of CL1-5 xenografts without observed adverse effect. Immunohistochemistry Analysis indicated that 5-AcTMF induced CL1-5 cell apoptosis and autophagy in vivo. Taken together, these data demonstrate that 5-AcTMF is a novel small molecule agent that can inhibit NSCLC cell proliferation, and induce G(2)/M phase arrest and via the mitochondrial apoptotic pathway and autophagy.[Abstract] [Full Text] [Related] [New Search]