These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Phase-dependent reversal of the crossed conditioning effect on the soleus Hoffmann reflex from cutaneous afferents during walking in humans. Author: Suzuki S, Nakajima T, Futatsubashi G, Mezzarane RA, Ohtsuka H, Ohki Y, Komiyama T. Journal: Exp Brain Res; 2016 Feb; 234(2):617-26. PubMed ID: 26573576. Abstract: We previously demonstrated that non-noxious electrical stimulation of the cutaneous nerve innervating the contralateral foot modified the excitability of the Hoffmann (H-) reflex in the soleus muscle (SOL) in a task-dependent manner during standing and walking in humans. To date, however, it remains unclear how the crossed conditioning effect on the SOL H-reflex from the contralateral foot is modified during the various phases of walking. We sought to answer this question in the present study. The SOL H-reflex was evoked in healthy volunteers by an electrical test stimulation (TS) of the right (ipsilateral) posterior tibial nerve at five different phases during treadmill walking (4 km/h). A non-noxious electrical stimulation was delivered to the superficial peroneal nerve of the left (contralateral) ankle ~100 ms before the TS as a conditioning stimulation (CS). This CS significantly suppressed the H-reflex amplitude during the early stance phase, whereas the same CS significantly facilitated the H-reflex amplitude during the late stance phase. The CS alone did not produce detectable changes in the full-wave rectified electromyogram of the SOL. This result indicates that presynaptic mechanisms driven by the activation of low-threshold cutaneous afferents in the contralateral foot play a role in regulating the transmission between the Ia terminal and motoneurons in a phase-dependent manner. The modulation pattern of the crossed conditioning effect on the SOL H-reflex may be functionally relevant for the left-right coordination of leg movements during bipedal walking.[Abstract] [Full Text] [Related] [New Search]