These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Accurate ab initio description of adsorption on coordinatively unsaturated Cu(2+) and Fe(3+) sites in MOFs. Author: Grajciar L, Nachtigall P, Bludský O, Rubeš M. Journal: J Chem Theory Comput; 2015 Jan 13; 11(1):230-8. PubMed ID: 26574221. Abstract: The performance of different exchange-correlation functionals was evaluated for the description of the interaction of small molecules with (i) cluster models containing Cu(2+) and Fe(3+) coordinatively unsaturated metal sites and (ii) HKUST-1 metal organic framework (MOF). Adsorbates forming dispersion-bound complexes (CH4), complexes with important dispersion and electrostatic contributions (H2, N2, CO2), and complexes stabilized also by a partial dative bond (CO, H2O, and NH3) were considered. The interaction with coordinatively unsaturated sites was evaluated with respect to the coupled-cluster calculations for Cu(2+) and Fe(3+) centers represented by cluster models. The adsorption on dispersion-stabilized sites was examined for the cage-window and the cage-center sites in HKUST-1 with respect to the experimental and DFT/CC results. None of the functionals considered can accurately describe the interaction of all seven adsorbates with Cu(2+) and Fe(3+) sites and with dispersion-dominated adsorption sites. The interaction with coordinatively unsaturated sites was frequently underestimated, for adsorbates forming a partial dative bond in particular, while the adsorption at dispersion-stabilized sites was overestimated. Consequently, interaction energies calculated for different adsorption sites were often in qualitatively incorrect order. The optimal exchange-correlation functional for a particular adsorbate/MOF can thus be found by comparing the performance of various functionals with respect to highly accurate calculations on smaller cluster models as a good representative of MOF structural building blocks.[Abstract] [Full Text] [Related] [New Search]