These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Graphitic Carbon Nitride Sensitized with CdS Quantum Dots for Visible-Light-Driven Photoelectrochemical Aptasensing of Tetracycline. Author: Liu Y, Yan K, Zhang J. Journal: ACS Appl Mater Interfaces; 2016 Oct 26; 8(42):28255-28264. PubMed ID: 26574640. Abstract: Graphitic carbon nitride (g-C3N4) is a new type of metal-free semiconducting material with promising applications in photocatalytic and photoelectrochemical (PEC) devices. In the present work, g-C3N4 coupled with CdS quantum dots (QDs) was synthesized and served as highly efficient photoactive species in a PEC sensor. The surface morphological analysis showed that CdS QDs with a size of ca. 4 nm were grafted on the surface of g-C3N4 with closely contacted interfaces. The UV-visible diffuse reflection spectra (DRS) indicated that the absorption of g-C3N4 in the visible region was enhanced by CdS QDs. As a result, g-C3N4-CdS nanocomposites demonstrated higher PEC activity as compared with either pristine g-C3N4 or CdS QDs. When g-C3N4-CdS nanocomposites were utilized as transducer and tetracycline (TET)-binding aptamer was immobilized as biorecognition element, a visible light-driven PEC aptasensing platform for TET determination was readily fabricated. The sensor showed a linear PEC response to TET in the concentration range from 10 to 250 nM with a detection limit (3S/N) of 5.3 nM. Thus, g-C3N4 sensitized with CdS QDs was successfully demonstrated as useful photoactive nanomaterials for developing a highly sensitive and selective PEC aptasensor.[Abstract] [Full Text] [Related] [New Search]