These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Tailored Synthesis of Porous TiO₂ Nanocubes and Nanoparallelepipeds with Exposed {111} Facets and Mesoscopic Void Space: A Superior Candidate for Efficient Dye-Sensitized Solar Cells. Author: Amoli V, Bhat S, Maurya A, Banerjee B, Bhaumik A, Sinha AK. Journal: ACS Appl Mater Interfaces; 2015 Dec 02; 7(47):26022-35. PubMed ID: 26574644. Abstract: Anatase TiO2 nanocubes and nanoparallelepipeds, with highly reactive {111} facets exposed, were developed for the first time through a modified one pot hydrothermal method, through the hydrolysis of tetrabutyltitanate in the presence of oleylamine as the morphology-controlling capping-agent and using ammonia/hydrofluoric acid for stabilizing the {111} faceted surfaces. These nanocubes/nanoparallelepipeds were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM) and high angle annular dark-field scanning TEM (HAADF-STEM). Accordingly, a possible growth mechanism for the nanostructures is elucidated. The morphology, surface area and the pore size distribution of the TiO2 nanostructures can be tuned simply by altering the HF and ammonia dosage in the precursor solution. More importantly, optimization of the reaction system leads to the assembly of highly crystalline, high surface area, {111} faceted anatase TiO2 nanocubes/nanoparallelepipeds to form uniform mesoscopic void space. We report the development of a novel double layered photoanode for dye sensitized solar cells (DSSCs) made of highly crystalline, self-assembled faceted TiO2 nanocrystals as upper layer and commercial titania nanoparticles paste as under layer. The bilayered DSSC made from TiO2 nanostructures with exposed {111} facets as upper layer shows a much higher power conversion efficiency (9.60%), than DSSCs fabricated with commercial (P25) titania powder (4.67%) or with anatase TiO2 nanostructures having exposed {101} facets (7.59%) as the upper layer. The improved performance in bilayered DSSC made from TiO2 nanostructures with exposed {111} facets as the upper layer is attributed to high dye adsorption and fast electron transport dynamics owing to the unique structural features of the {111} facets in TiO2. Electrochemical impedance spectroscopy (EIS) measurements conducted on the cells supported these conclusions, which showed that the bilayered DSSC made from TiO2 nanostructures with exposed {111} facets as the upper layer possessed lower charge transfer resistance, higher electron recombination resistance, longer electron lifetime and higher collector efficiency characteristics, compared to DSSCs fabricated with commercial (P25) titania powder or with anatase TiO2 nanostructures having exposed {101} facets as the upper layer.[Abstract] [Full Text] [Related] [New Search]