These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Deferoxamine stimulates LDLR expression and LDL uptake in HepG2 cells. Author: Guillemot J, Asselin MC, Susan-Resiga D, Essalmani R, Seidah NG. Journal: Mol Nutr Food Res; 2016 Mar; 60(3):600-8. PubMed ID: 26577249. Abstract: SCOPE: Iron overload contributes to the pathogenesis of atherosclerosis and iron chelators are beneficial through their antioxidant properties. Hepatic iron loading increases cholesterol synthesis. Whether iron depletion could affect hepatic cholesterol metabolism is unknown. METHODS AND RESULTS: We examined the effect of the iron chelator deferoxamine (DFO) on mRNA expression of genes involved in cholesterol metabolism and/or cholesterol uptake. Our results revealed that DFO increases LDL receptor (LDLR) mRNA levels in human hepatocyte-derived cell lines HepG2 and Huh7 cells, and in K562 cells. In HepG2 cells, we observed that DFO increases (i) LDLR-mRNA levels in a time- and dose-dependent manner, (ii) LDLR-protein levels; (iii) cell surface LDLR; and (iv) LDL uptake. In contrast, the mRNA levels of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol regulatory element-binding proteins, and the mRNA/protein levels of proprotein convertase subtilisin-kexin 9 were not modulated by DFO, suggesting that the LDLR regulation by DFO is not at the transcriptional or posttranslational levels. Since LDLR-mRNA was stabilized by DFO, a posttranscriptional mechanism is suggested for the DFO-mediated upregulation of LDLR. CONCLUSION: DFO induced an increase in LDLR expression by a posttranscriptional mechanism resulting in an enhancement of LDL uptake in HepG2 cells, suggesting increased LDLR activity as one of the underlying causes of the hypocholesterolemic effect of iron reduction.[Abstract] [Full Text] [Related] [New Search]