These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Site-directed mutagenesis of the phosphocarrier protein. IIIGlc, a major signal-transducing protein in Escherichia coli.
    Author: Presper KA, Wong CY, Liu L, Meadow ND, Roseman S.
    Journal: Proc Natl Acad Sci U S A; 1989 Jun; 86(11):4052-5. PubMed ID: 2657735.
    Abstract:
    The glucose-specific phosphocarrier protein (IIIGlc) of the bacterial phosphoenolpyruvate:glycose phosphotransferase system (PTS) is a major signal transducer that mediates the intricate interplay among extracellular signals (PTS and non-PTS sugars), cytoplasmic and membrane proteins (PTS and non-PTS transporters), and adenylate cyclase. To further define the central role of IIIGlc in these multiplex signaling mechanisms, we have used site-directed mutagenesis to construct three mutant IIIGlc proteins containing single amino acid changes; Phe-3 was replaced with tryptophan [( Trp3]IIIGlc), and His-75 and the active-site His-90 were replaced with glutamine [( Gln75]IIIGlc and [Gln90]IIIGlc, respectively). [Trp3]IIIGlc resembles the wild-type protein in most properties and should be valuable for spectrophotometric experiments. In contrast, clear differences between mutant and wild-type proteins were observed with both [Gln75]IIIGlc and [Gln90]IIIGlc in in vitro sugar phosphorylation assays. As predicted, [Gln90]IIIGlc with a modified active site cannot be phosphorylated. Unexpectedly, [Gln75]IIIGlc accepts but cannot transfer phosphoryl groups, suggesting His-75 may also be a critical amino acid for IIIGlc-mediated signaling mechanisms. The physiological effects of these mutations are briefly described.
    [Abstract] [Full Text] [Related] [New Search]