These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Migration of CD8+ T Cells into the Central Nervous System Gives Rise to Highly Potent Anti-HIV CD4dimCD8bright T Cells in a Wnt Signaling-Dependent Manner.
    Author: Richards MH, Narasipura SD, Seaton MS, Lutgen V, Al-Harthi L.
    Journal: J Immunol; 2016 Jan 01; 196(1):317-27. PubMed ID: 26582945.
    Abstract:
    The role of CD8(+) T cells in HIV control in the brain and the consequences of such control are unclear. Approximately 3% of peripheral CD8(+) T cells dimly express CD4 on their surface. This population is known as CD4(dim)CD8(bright) T cells. We evaluated the role of CD4(dim)CD8(bright) and CD8 single positive T cells in HIV-infected brain using NOD/SCID/IL-2rcγ(-/-) mice reconstituted with human PBMCs (NSG-huPBMC). All three T cell populations (CD4 single positive, CD8 single positive, and CD4(dim)CD8(bright)) were found in NSG-huPBMC mouse brain within 2 wk of infection. Wnts secreted from astrocytes induced CD4(dim)CD8(bright) T cells by 2-fold in vitro. Injection of highly purified CD8 single positive T cells into mouse brain induced CD4(dim)CD8(bright) T cells by 10-fold, which were proliferative and exhibited a terminally differentiated effector memory phenotype. Brain CD4(dim)CD8(bright) T cells from HIV-infected mice exhibited anti-HIV-specific responses, as demonstrated by induction of CD107ab post exposure to HIV peptide-loaded targets. Further, higher frequency of CD4(dim)CD8(bright) T cells (R = -0.62; p ≤ 0.001), but not CD8 single positive T cells (R = -0.24; p ≤ 0.27), negatively correlated with HIV gag mRNA transcripts in HIV-infected NSG-huPBMC brain. Together, these studies indicate that single positive CD8(+) T cells entering the CNS during HIV infection can give rise to CD4(dim)CD8(bright) T cells, likely through a Wnt signaling-dependent manner, and that these cells are associated with potent anti-HIV control in the CNS. Thus, CD4(dim)CD8(bright) T cells are capable of HIV control in the CNS and may offer protection against HIV-associated neurocognitive disorders.
    [Abstract] [Full Text] [Related] [New Search]