These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Estrogenic activity in Finnish municipal wastewater effluents.
    Author: Välitalo P, Perkola N, Seiler TB, Sillanpää M, Kuckelkorn J, Mikola A, Hollert H, Schultz E.
    Journal: Water Res; 2016 Jan 01; 88():740-749. PubMed ID: 26584345.
    Abstract:
    Effluents from wastewater treatment plants (WWTPs) are a major source of estrogenic compounds to the aquatic environment. In the present work, estrogenic activities of effluents from eight municipal WWTPs in Finland were studied. The main objectives of the study were to quantify the concentrations of selected estrogenic compounds, to evaluate their contribution to estrogenic potency and to test the feasibility of the commercial bioassays for wastewater analysis. The effluent samples were analyzed by two in vitro tests, i.e. ERα-CALUX(®) and ELISA-E2, and by liquid chromatography mass spectrometry for six estrogenic compounds: estrone (E1), 17β-estradiol (E2), estriol (E3), 17α-ethinylestradiol (EE2), 17α-estradiol and bisphenol A (BPA). Estrogenic effects were found in all of the effluent samples with both of the bioassays. The concentrations measured with ELISA-E2 (8.6-61.6 ng/L) were clearly higher but exhibited a similar pattern than those with chemical analysis (E2 <limit of quantification - 6.8 ng/L) and ERα-CALUX(®) (0.8-29.7 ng E2 EEQ/L). Due to the concentrations under limit of quantification, the evaluation of the chemical contribution to estrogenic potency was possible only for E1 and BPA, which contributed less than 10% to the observed effects, except in one sample with a high BPA contribution (17%). The contribution of E2 was significant in two samples where it was detected (28% and 67%). The results demonstrated that more comprehensive information on potential estrogenic activity of wastewater effluents can be achieved by using in vitro biotests in addition to chemical analysis and their use would be beneficial in monitoring and screening purposes.
    [Abstract] [Full Text] [Related] [New Search]