These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dual antitumoral potency of EG5 siRNA nanoplexes armed with cytotoxic bifunctional glutamyl-methotrexate targeting ligand.
    Author: Lee DJ, Kessel E, Edinger D, He D, Klein PM, Voith von Voithenberg L, Lamb DC, Lächelt U, Lehto T, Wagner E.
    Journal: Biomaterials; 2016 Jan; 77():98-110. PubMed ID: 26584350.
    Abstract:
    Synthetic small interfering RNA (siRNA) is a class of therapeutic entities that allow for specific silencing of target genes via RNA interference (RNAi) and comprise an enormous clinical potential for a variety of diseases, including cancer. However, efficient tissue-specific delivery of siRNA remains the major limitation in the development of RNAi-based cancer therapeutics. To achieve this, we have synthesized a series of sequence-defined oligomers, which include a cationic (oligoethanamino)amide core (for nanoparticle formation with siRNA), cysteines (as bioreversible disulfide units), and a polyethylene glycol chain (for shielding of surface charges) coupled to a terminal targeting ligand. The antifolate drug methotrexate (MTX), a well-established chemotherapeutic agent, serves as both targeting ligand and anticancer agent. The oligomers form homogeneous spherical siRNA polyplexes with a hydrodynamic diameter of approximately 6 nm. These polyplexes access KB cells by binding to the folate receptor in a MTX-dependent manner and induce efficient gene silencing activity in vitro. Impressively, in the in vivo studies, MTX-conjugated polyplexes significantly increase the intratumoral retention (168 h) of the siRNA, as compared to alanine-substituted non-targeted control polyplexes (48 h). The combination of MTX-conjugated polyplexes and eglin 5 (EG5) siRNA provides enhanced antitumoral potency with 50% of recurrence-free survival of KB tumor-bearing mice. The design of such siRNA carrier systems with a dual-functional ligand for cellular delivery and augmented tumor suppression could be a valuable strategy for translating RNAi-based cancer therapeutics to the clinics.
    [Abstract] [Full Text] [Related] [New Search]