These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-125b Is Critical for Fibroblast-to-Myofibroblast Transition and Cardiac Fibrosis. Author: Nagpal V, Rai R, Place AT, Murphy SB, Verma SK, Ghosh AK, Vaughan DE. Journal: Circulation; 2016 Jan 19; 133(3):291-301. PubMed ID: 26585673. Abstract: BACKGROUND: Cardiac fibrosis is the pathological consequence of stress-induced fibroblast proliferation and fibroblast-to-myofibroblast transition. MicroRNAs have been shown to play a central role in the pathogenesis of cardiac fibrosis. We identified a novel miRNA-driven mechanism that promotes cardiac fibrosis via regulation of multiple fibrogenic pathways. METHODS AND RESULTS: Using a combination of in vitro and in vivo studies, we identified that miR-125b is a novel regulator of cardiac fibrosis, proliferation, and activation of cardiac fibroblasts. We demonstrate that miR-125b is induced in both fibrotic human heart and murine models of cardiac fibrosis. In addition, our results indicate that miR-125b is necessary and sufficient for the induction of fibroblast-to-myofibroblast transition by functionally targeting apelin, a critical repressor of fibrogenesis. Furthermore, we observed that miR-125b inhibits p53 to induce fibroblast proliferation. Most importantly, in vivo silencing of miR-125b by systemic delivery of locked nucleic acid rescued angiotensin II-induced perivascular and interstitial fibrosis. Finally, the RNA-sequencing analysis established that miR-125b altered the gene expression profiles of the key fibrosis-related genes and is a core component of fibrogenesis in the heart. CONCLUSIONS: In conclusion, miR-125b is critical for induction of cardiac fibrosis and acts as a potent repressor of multiple anti-fibrotic mechanisms. Inhibition of miR-125b may represent a novel therapeutic approach for the treatment of human cardiac fibrosis and other fibrotic diseases.[Abstract] [Full Text] [Related] [New Search]