These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dissipation kinetics of emamectin benzoate and lufenuron residues in cabbage grown under field conditions. Author: Dong B, Zhao Q, Hu J. Journal: Environ Monit Assess; 2015 Dec; 187(12):765. PubMed ID: 26590145. Abstract: Residue analysis of emamectin benzoate and lufenuron in cabbage matrices and soil was developed using a quick, easy, cheap, effective, rugged, and safe (QuEChERS) method and ultra high-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The samples were extracted with 1% acetic acid in acetonitrile (v/v) or 1% acetic acid in acetonitrile/water (5:1, v/v) and cleaned up by dispersive solid-phase extraction. Mean recoveries and relative standard deviations (RSDs) in all samples ranged 87.8-100.0 % and 3.6-12.6% for emamectin benzoate and 87.8-104.8 % and 6.2-11.5% for lufenuron, respectively. The validated method was used to evaluate the dissipation rate of emamectin benzoate and lufenuron in cabbage and soil as well as the residual levels in harvested cabbage and soil at different preharvest intervals (PHI). The half-lives of emamectin benzoate and lufenuron were 1.08-2.70 and 1.74-5.04 days in cabbage, and 1.42-4.01 and 0.94-6.18 days in soil, respectively. The terminal residues were below the China maximum residue limits (MRLs) at 3 days for emamectin benzoate (0.1 mg kg(-1)) and European Union MRLs at 5 days for lufenuron (0.5 mg kg(-1)), which suggested that 5 days could be recommended as the PHI for the commercial formulation of emamectin benzoate and lufenuron application in the Chinese cabbage field.[Abstract] [Full Text] [Related] [New Search]