These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evaluation of two passive samplers for the analysis of organophosphate esters in the ambient air. Author: Liu R, Lin Y, Liu R, Hu F, Ruan T, Jiang G. Journal: Talanta; 2016 Jan 15; 147():69-75. PubMed ID: 26592578. Abstract: Both polyurethane foam (PUF) and sorbent-impregnated PUF (SIP) passive air sampling (PAS) methods were deployed and compared separately for the analysis of organophosphate esters (OPEs) in outdoor atmospheric environment. During an continuous period of 84 days, parallel samples were also collected by a high-volume active air sampler (HV-AAS) to assess the contamination levels and to calibrate uptake parameters of PAS. The total concentration of OPEs in both particulate and gaseous phases ranged from 1.50 to 5.64ng m(-3) in ambient air. Tris(2-chloroisopropyl) phosphate (TCPP) was the dominating analog, representing 78±9% of total OPE concentration. SIP-PAS showed longer linear-phase sampling period for TCPP, and accumulated more amount of the most volatile triethyl phosphate (TEP) and tributyl phosphate (TBP) homologues, while similar sorption performances of both PAS methods were found for most of the semi-volatile OPEs. Linear sampling rates in PUF-PAS and SIP-PAS disks were calculated for individual OPEs except for TEP and TBP, and the average uptake rates (3.3±1.1 and 3.5±1.7m(3)d(-1), respectively) were close to the acknowledged value (4m(-3)d(-1)) for persistent organic pollutants. Besides, isotopic labeled D15-Triphenyl phosphate (TPhP) could be used as a viable depuration compound to calculate site-specific sampling rates of OPEs, with a linear loss of up to ∼60% at the end of deployment time.[Abstract] [Full Text] [Related] [New Search]