These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Evidence for expression of a common myosin heavy chain phenotype in future fast and slow skeletal muscle during initial stages of avian embryogenesis. Author: Sweeney LJ, Kennedy JM, Zak R, Kokjohn K, Kelley SW. Journal: Dev Biol; 1989 Jun; 133(2):361-74. PubMed ID: 2659404. Abstract: We have utilized a key biochemical determinant of muscle fiber type, myosin isoform expression, to investigate the initial developmental program of future fast and slow skeletal muscle fibers. We examined myosin heavy chain (HC) phenotype from the onset of myogenesis in the limb bud muscle masses of the chick embryo through the differentiation of individual fast and slow muscle masses, as well as in newly formed myotubes generated in adult muscle by weight overload. Myosin HC isoform expression was analyzed by immunofluorescence localization with a battery of anti-myosin antibodies and by electrophoretic separation with SDS-PAGE. Results showed that the initial myosin phenotype in all skeletal muscle cells formed during the embryonic period (until at least 8 days in ovo) consisted of expression of a myosin HC which shares antigenic and electrophoretic migratory properties with ventricular myosin and a distinct myosin HC which shares antigenic and electrophoretic migratory properties with fast skeletal isomyosin. Similar results were observed in newly formed myotubes in adult muscle. Future fast and slow muscle fibers could only be discriminated from each other in developing limb bud muscles by the onset of expression of slow skeletal myosin HC at 6 days in ovo. Slow skeletal myosin HC was expressed only in myotubes which became slow fibers. These findings suggest that the initial commitment of skeletal muscle progenitor cells is to a common skeletal muscle lineage and that commitment to a fiber-specific lineage may not occur until after localization of myogenic cells in appropriate premuscle masses. Thus, the process of localization, or events which occur soon thereafter, may be involved in determining fiber type.[Abstract] [Full Text] [Related] [New Search]