These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Cr-Doped ZnO Nanoparticles: Synthesis, Characterization, Adsorption Property, and Recyclability. Author: Meng A, Xing J, Li Z, Li Q. Journal: ACS Appl Mater Interfaces; 2015 Dec 16; 7(49):27449-57. PubMed ID: 26600320. Abstract: In this paper, a mild solvothermal method has been employed to successfully synthesize a series of Cr-doped ZnO nanoparticles (NPs) with different Cr(3+) contents, which is a kind of novel and high-efficiency absorbent for the removal of acid dye methyl orange (MO) from aqueous solution. The as-prepared products were characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), Brunauer, Emmet, and Teller (BET), and Zeta potential measurements. In accordance with the adsorption capacity of the products, the obtained optimal Cr/Zn molar ratio is 6%. The adsorption process of MO on Cr-doped ZnO was investigated by kinetics, thermodynamics, and isotherm technologies, which, respectively, indicated that the adsorption was fast (adsorption reached equilibrium in 2 h) and followed a pseudo-second-order model, that the adsorption process was spontaneous and endothermic, and that it agreed well with the Langmuir isotherm with a maximum adsorption capacity of 310.56 mg g(-1). Moreover, a reasonable mechanism was proposed to elucidate the reasons for their adsorption behavior. In addition, a simple and low-cost chemical method was developed to separate and recycle ZnO and MO from the used adsorbent, effectively avoiding the secondary pollution. This work can not only describe efficient experimental approaches for obtaining novel adsorbents and recycling them but also offer valuable clues for the preparation and property study of other semiconductor adsorbents.[Abstract] [Full Text] [Related] [New Search]