These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Longitudinal analysis of the peripheral B cell repertoire reveals unique effects of immunization with a new influenza virus strain.
    Author: Cortina-Ceballos B, Godoy-Lozano EE, Téllez-Sosa J, Ovilla-Muñoz M, Sámano-Sánchez H, Aguilar-Salgado A, Gómez-Barreto RE, Valdovinos-Torres H, López-Martínez I, Aparicio-Antonio R, Rodríguez MH, Martínez-Barnetche J.
    Journal: Genome Med; 2015 Nov 25; 7():124. PubMed ID: 26608341.
    Abstract:
    BACKGROUND: Despite the potential to produce antibodies that can neutralize different virus (heterotypic neutralization), there is no knowledge of why vaccination against influenza induces protection predominantly against the utilized viral strains (homotypic response). Identification of structural patterns of the B cell repertoire associated to heterotypic neutralization may contribute to identify relevant epitopes for a universal vaccine against influenza. METHODS: Blood samples were collected from volunteers immunized with 2008/2009 trivalent inactivated vaccine (TIV), pandemic H1N1 (pdmH1N1) monovalent inactivated vaccine (MIV) and the 2014/2015 TIV. Neutralization was assessed by hemagglutination and microneutralization test. IgG V(H) amplicons derived from peripheral blood RNA from pre-immune and 7 days post vaccination were subjected to 454-Roche sequencing. Full reconstruction of the sampled repertoires was done with ImmunediveRsity. RESULTS: The TIV induced a predominantly homotypic neutralizing serologic response, while the 09 MIV induced a heterotypic neutralizing seroconversion in 17% of the individuals. Both the 08/09 and the 14/15 TIV were associated with a reduction in clonotypic diversity, whereas 09 MIV was the opposite. Moreover, TIV and MIV induced distinctive patterns of IGHV segment use that are consistent with B cell selection by conserved antigenic determinants shared by the pre-pandemic and the pandemic strains. However, low somatic hypermutation rates in IgG after 09 MIV immunization, but not after 08/09 and 14/15 TIV immunization were observed. Furthermore, no evidence of the original antigenic sin was found in the same individuals after vaccination with the three vaccines. CONCLUSIONS: Immunization with a new influenza virus strain (2009 pdmH1N1) induced unique effects in the peripheral B cell repertoire clonal structure, a stereotyped response involving distinctive IGHV segment use and low somatic hypermutation levels. These parameters were contrastingly different to those observed in response to pre-pandemic and post-pandemic vaccination, and may be the result of clonal selection of common antigenic determinants, as well as germinal center-independent responses that wane as the pandemic strain becomes seasonal. Our findings may contribute in the understanding of the structural and cellular basis required to develop a universal influenza vaccine.
    [Abstract] [Full Text] [Related] [New Search]