These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The Role and Mechanism of α-Klotho in the Calcification of Rat Aortic Vascular Smooth Muscle Cells. Author: Chen T, Mao H, Chen C, Wu L, Wang N, Zhao X, Qian J, Xing C. Journal: Biomed Res Int; 2015; 2015():194362. PubMed ID: 26609522. Abstract: OBJECTIVE: To investigate the role and possible mechanism of α-Klotho in the calcification and the osteogenic transition of cultured VSMCs. METHODS: VSMCs were cultured in vitro and divided into 5 groups, each using a different medium: (1) control; (2) β-GP; (3) β-GP + Klotho; (4) β-GP + LiCl; (5) β-GP + Klotho + LiCl. Calcium deposits were visualized using Alizarin Red S staining. The calcium concentrations were determined by the o-cresolphthalein complexone method. BMP2, Runx2 and β-catenin levels were estimated by western blotting, and the level of α-SMA was determined by using immunofluorescence at day 12. RESULTS: β-GP induced an increase in the expression of BMP2, Runx2, and β-catenin. The calcium content increased, and the expression of α-SMA decreased. Alizarin Red S staining was positive under the high phosphorus conditions. BMP2, Runx2, and β-catenin levels and the calcium content decreased when the cells were cultured with rmKlotho; however, the levels of each were upregulated after treatment with the LiCl. CONCLUSIONS: Klotho can ameliorate the calcification and osteogenic transition of VSMCs induced by β-GP. The mechanism of Klotho in preventing calcification in VSMCs may be partially mediated by the inhibition of the Wnt/β-catenin signaling pathway.[Abstract] [Full Text] [Related] [New Search]