These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Computational fluid dynamics simulations of blood flow regularized by 3D phase contrast MRI. Author: Rispoli VC, Nielsen JF, Nayak KS, Carvalho JL. Journal: Biomed Eng Online; 2015 Nov 26; 14():110. PubMed ID: 26611470. Abstract: BACKGROUND: Phase contrast magnetic resonance imaging (PC-MRI) is used clinically for quantitative assessment of cardiovascular flow and function, as it is capable of providing directly-measured 3D velocity maps. Alternatively, vascular flow can be estimated from model-based computation fluid dynamics (CFD) calculations. CFD provides arbitrarily high resolution, but its accuracy hinges on model assumptions, while velocity fields measured with PC-MRI generally do not satisfy the equations of fluid dynamics, provide limited resolution, and suffer from partial volume effects. The purpose of this study is to develop a proof-of-concept numerical procedure for constructing a simulated flow field that is influenced by both direct PC-MRI measurements and a fluid physics model, thereby taking advantage of both the accuracy of PC-MRI and the high spatial resolution of CFD. The use of the proposed approach in regularizing 3D flow fields is evaluated. METHODS: The proposed algorithm incorporates both a Newtonian fluid physics model and a linear PC-MRI signal model. The model equations are solved numerically using a modified CFD algorithm. The numerical solution corresponds to the optimal solution of a generalized Tikhonov regularization, which provides a flow field that satisfies the flow physics equations, while being close enough to the measured PC-MRI velocity profile. The feasibility of the proposed approach is demonstrated on data from the carotid bifurcation of one healthy volunteer, and also from a pulsatile carotid flow phantom. RESULTS: The proposed solver produces flow fields that are in better agreement with direct PC-MRI measurements than CFD alone, and converges faster, while closely satisfying the fluid dynamics equations. For the implementation that provided the best results, the signal-to-error ratio (with respect to the PC-MRI measurements) in the phantom experiment was 6.56 dB higher than that of conventional CFD; in the in vivo experiment, it was 2.15 dB higher. CONCLUSIONS: The proposed approach allows partial or complete measurements to be incorporated into a modified CFD solver, for improving the accuracy of the resulting flow fields estimates. This can be used for reducing scan time, increasing the spatial resolution, and/or denoising the PC-MRI measurements.[Abstract] [Full Text] [Related] [New Search]