These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Morphological analysis of the hagfish heart. I. The ventricle, the arterial connection and the ventral aorta.
    Author: Icardo JM, Colvee E, Schorno S, Lauriano ER, Fudge DS, Glover CN, Zaccone G.
    Journal: J Morphol; 2016 Mar; 277(3):326-40. PubMed ID: 26611522.
    Abstract:
    We have studied the heart in three species of hagfish: Myxine glutinosa, Eptatretus stoutii, and Eptatretus cirrhatus and report about the morphology of the ventricle, the arterial connection and the ventral aorta. On the whole, the hagfish heart lacks outflow tract components, the ventricle and atrium adopt a dorso-caudal rather than a ventro-dorsal relationship, and the sinus venosus opens into the left side of the atrium. This may indicate a "defective" cardiac looping during embryogenesis. The ventral aorta is elongated in M. glutinosa and E. stoutii but sac-like in E. cirrhatus. The ventricles are entirely trabeculated. The myocytes show a low myofibrillar content and junctional complexes formed by fascia adherens and desmosomes. Gap junctions could not be demonstrated. Myocardial cells in M. glutinosa contain numerous lipid droplets. These droplets are less numerous in E. stoutii and practically absent in E. cirrhatus, suggesting different metabolic requirements. Other cell types present in the ventricle are chromaffin cells and granular leukocytes that contain rod-shaped granules. The ventricle-aorta connection is guarded by a bicuspid valve with left and right, pocket-like leaflets. The leaflets extend from the cranial end of the ventricle into the aorta but the junction is asymmetrical. This junction contains a ganglion-like structure in E. cirrhatus. The ventral aorta shows endothelial, media, and adventitial layers. The media contains smooth muscle cells surrounded by dense bands formed by tightly-packed extracellular filaments. In addition, a short number of elastic fibers are observed in M. glutinosa and E. stoutii. Cellular and extracellular elements are more loosely organized in the aorta of E. cirrhatus. The collagenous adventitia contains ganglion-like cells in the three species. In the absence of nerves, chromaffin and ganglion-like cells may control the activity of the myocardium and that of the aortic smooth muscle cells, respectively.
    [Abstract] [Full Text] [Related] [New Search]