These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Knockdown of long non-coding RNA MALAT1 increases the blood-tumor barrier permeability by up-regulating miR-140. Author: Ma J, Wang P, Yao Y, Liu Y, Li Z, Liu X, Li Z, Zhao X, Xi Z, Teng H, Liu J, Xue Y. Journal: Biochim Biophys Acta; 2016 Feb; 1859(2):324-38. PubMed ID: 26619802. Abstract: The blood-tumor barrier (BTB) forms a major obstacle in brain tumor therapy by preventing the delivery of sufficient quantities of therapeutic drugs. Long non-coding RNAs (lncRNAs) play important roles in both normal development and diseases including cancer. Here, we elucidated the expression of lncRNA metastasis associated lung adenocarcinoma transcript 1 (MALAT1) and defined its functional role in the regulation of BTB function as well as its possible molecular mechanisms. Our results proved that MALAT1 expression was up-regulated in brain microvessels of human glioma and glioma endothelial cells (GECs) which were obtained by co-culturing endothelial cells with glioma cells. Functionally, knockdown of MALAT1 resulted in an impairment and increased the permeability of BTB as well as decreased the expression of ZO-1, occludin and claudin-5 in GECs. Further, there was reciprocal repression between MALAT1 and miR-140, and miR-140 mediated the effects that MALAT1 knockdown exerted. Mechanistic investigations defined that nuclear factor YA (NFYA), a CCAAT box-binding transcription factor, was a direct and functional downstream target of miR-140, which was involved in the MALAT1 knockdown induced regulation of BTB function. Furthermore, NFYA could up-regulate the promoter activities and bind to the promoters of ZO-1, occludin and claudin-5 in GECs. Taken together, we have demonstrated the fact that knockdown of MALAT1 resulted in the increased permeability of BTB, which might contribute to establishing potential therapeutic strategies for human gliomas.[Abstract] [Full Text] [Related] [New Search]