These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: The Bioconversion of Pretreated Cashew Apple Bagasse into Ethanol by SHF and SSF Processes.
    Author: Rodrigues TH, de Barros EM, de Sá Brígido J, da Silva WM, Rocha MV, Gonçalves LR.
    Journal: Appl Biochem Biotechnol; 2016 Mar; 178(6):1167-83. PubMed ID: 26634842.
    Abstract:
    Ethanol production from acidic-alkaline pretreated cashew apple bagasse (CAB-OH) was investigated using separated hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) processes. First, a screening of Kluyveromyces strains was conducted by SHF and a maximum ethanol concentration of 24.1 g L(-1) was obtained using Kluyveromyces marxianus ATCC36907, which presented similar profiles when compared to results obtained by a Saccharomyces strain. The effect of temperature on ethanol production conducted by SHF using K. marxianus ATCC36907 was investigated, and the maximum ethanol yield (YE/G) was obtained at 40 °C (0.46 g g(-1)) using a synthetic medium. In the SHF using CAB-OH hydrolysate, the maximum ethanol concentration obtained was 24.9 g L(-1), 5.92 g L(-1) h(-1) of productivity, and ethanol yield of 0.43 g g(-1) at 40 °C. Afterwards, K. marxianus ATCC36907 was used in the bioconversion of CAB-OH by SSF, and an ethanol concentration of 41.41 ± 0.2 g L(-1) was obtained using 10 % CAB-OH at 40 °C, 150 rpm and 24 h, resulting in a Y'E/G of 0.50 gE gG (-1) and an efficiency of 98.4 %, in the process conducted with cellobiase supplementation. SHF and SSF processes using CAB-OH and K. marxianus ATCC36907 can be used to ethanol production, but the SSF process required only one step to achieve the same production.
    [Abstract] [Full Text] [Related] [New Search]