These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Industrially important hydrolytic enzyme diversity explored in stove ash bacterial isolates.
    Author: Kiran T, Asad W, Siddiqui S, Ajaz M, Rasool SA.
    Journal: Pak J Pharm Sci; 2015 Nov; 28(6):2035-40. PubMed ID: 26639497.
    Abstract:
    Extreme environments merit special attention and significance because of the possible existence of thermophilic microorganisms in such ecological niches. Keeping this in mind indigenous stove ash samples were explored for extremophilic bacteria in term of their biodiversity. Accordingly, this study reports 37 bacterial isolates from the local wood run oven (Tandoor) ash samples. All the isolated strains belong to genus Bacillus on the bases of morpho-cultural and biochemical considerations. The average temperature tolerance profile was >45°C thereby, indicating towards the thermophilic nature of the isolated strains. The Bacillus isolates were screened for 10 different hydrolytic enzymes (cellulase, xylanase, amylase, pectinase, caseinase, keratinase, lipase, esterase, dextranase and β-galactosidase) by plate screening method using the medium incorporated with specific substrate(s). It was found that keratinase was produced by all the isolates while, 36 (97.2%) isolates showed caseinase and esterase production. Amylase was produced by 35(94.6%) isolates and 34 (91.8%) isolates were able to degrade Tween-80 and xylan as substrate for lipase and xylanase respectively. The enzyme, β-galactosidase was produced by 31 (89.1%) of the isolates. Cellulase and dextranase were produced by 26 (70.2%) and 22 (59.4%) isolates respectively. None of the isolates could (under the existing conditions) produce pectin-hydrolyzing enzyme. According to the Tukey's post hoc test, significant difference was found between the mean enzyme index of all the (screened) enzymes. Thus, the isolated bacterial strains with diverse hydrolytic potential may be of great value and relevance for the existing (national) industrial setups.
    [Abstract] [Full Text] [Related] [New Search]