These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: PEGylated Carbon Nanocapsule: A Universal Reactor and Carrier for In Vivo Delivery of Hydrophobic and Hydrophilic Nanoparticles. Author: Rammohan A, Mishra G, Mahaling B, Tayal L, Mukhopadhyay A, Gambhir S, Sharma A, Sivakumar S. Journal: ACS Appl Mater Interfaces; 2016 Jan 13; 8(1):350-62. PubMed ID: 26646711. Abstract: We have developed PEGylated mesoporous carbon nanocapsule as a universal nanoreactor and carrier for the delivery of highly crystalline hydrophobic/hydrophilic nanoparticles (NPs) which shows superior biocompatibility, dispersion in body fluids, good biodistribution and NPs independent cellular uptake mechanism. The hydrophobic/hydrophilic NPs without surface modification were synthesized in situ inside the cavities of mesoporous carbon capsules (200-850 nm). Stable and inert nature of carbon capsules in a wide range of reaction conditions like high temperature and harsh solvents, make it suitable for being used as nano/microreactors for the syntheses of a variety of NPs for bioimaging applications, such as NaYF4:Eu(3+)(5%), LaVO4:Eu(3+)(10%), GdVO4:Eu(3+)(10%), Y2O3:Eu(3+)(5%), GdF3:Tb(3+)(10%), Mo, Pt, Pd, Au, and Ag. Multiple types of NPs (Y2O3:Eu(3+)(5%) (hydrophobic) and GdF3:Tb(3+)(10%) (hydrophilic)) were coloaded inside the carbon capsules to create a multimodal agent for magneto-fluorescence imaging. Our in vivo study clearly suggests that carbon capsules have biodistribution in many organs including liver, heart, spleen, lungs, blood pool, and muscles.[Abstract] [Full Text] [Related] [New Search]