These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: AIE-Active Fluorene Derivatives for Solution-Processable Nondoped Blue Organic Light-Emitting Devices (OLEDs). Author: Feng XJ, Peng J, Xu Z, Fang R, Zhang HR, Xu X, Li L, Gao J, Wong MS. Journal: ACS Appl Mater Interfaces; 2015 Dec 30; 7(51):28156-65. PubMed ID: 26647284. Abstract: A series of fluorene derivatives end-capped with diphenylamino and oxadiazolyl were synthesized, and their photophysical and electrochemical properties are reported. Aggregation-induced emission (AIE) effects were observed for the materials, and bipolar characteristics of the molecules are favored with measurement of carrier mobility and calculation of molecular orbitals using density functional theory (DFT). Using the fluorene derivatives as emitting-layer, nondoped organic light-emitting devices (OLEDs) have been fabricated by spin-coating in the configuration ITO/PEDOT:PSS(35 nm)/PVK(15 nm)/PhN-OF(n)-Oxa(80 nm)/SPPO13(30 nm)/Ca(8 nm)/Al(100 nm) (n = 2-4). The best device with PhN-OF(2)-Oxa exhibits a maximum luminance of 14 747 cd/m(2), a maximum current efficiency of 4.61 cd/A, and an external quantum efficiency (EQE) of 3.09% in the blue region. Investigation of the correlation between structures and properties indicates that there is no intramolecular charge transfer (ICT) increase in these molecules with the increase of conjugation length. The device using material of the shortest conjugation length as emitting-layer gives the best electroluminescent (EL) performances in this series of oligofluorenes.[Abstract] [Full Text] [Related] [New Search]