These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Finite Element Analysis of a New Pedicle Screw-Plate System for Minimally Invasive Transforaminal Lumbar Interbody Fusion. Author: Li J, Shang J, Zhou Y, Li C, Liu H. Journal: PLoS One; 2015; 10(12):e0144637. PubMed ID: 26649749. Abstract: PURPOSE: Minimally invasive transforaminal lumbar interbody fusion (MI-TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disc diseases. The constructs intended for segmental stability are varied in MI-TLIF. We adopted finite element (FE) analysis to compare the stability after different construct fixations using interbody cage with posterior pedicle screw-rod or pedicle screw-plate instrumentation system. METHODS: A L3-S1 FE model was modified to simulate decompression and fusion at L4-L5 segment. Fixation modes included unilateral plate (UP), unilateral rod (UR), bilateral plate (BP), bilateral rod (BR) and UP+UR fixation. The inferior surface of the S1 vertebra remained immobilized throughout the load simulation, and a bending moment of 7.5 Nm with 400N pre-load was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Range of motion (ROM) and Von Mises stress were evaluated for intact and instrumentation models in all loading planes. RESULTS: All reconstructive conditions displayed decreased motion at L4-L5. The pedicle screw-plate system offered equal ROM to pedicle screw-rod system in unilateral or bilateral fixation modes respectively. Pedicle screw stresses for plate system were 2.2 times greater than those for rod system in left lateral bending under unilateral fixation. Stresses for plate were 3.1 times greater than those for rod in right axial rotation under bilateral fixation. Stresses on intervertebral graft for plate system were similar to rod system in unilateral and bilateral fixation modes respectively. Increased ROM and posterior instrumentation stresses were observed in all loading modes with unilateral fixation compared with bilateral fixation in both systems. CONCLUSIONS: Transforaminal lumbar interbody fusion augmentation with pedicle screw-plate system fixation increases fusion construct stability equally to the pedicle screw-rod system. Increased posterior instrumentation stresses are observed in all loading modes with plate fixation, and bilateral fixation could reduce stress concentration.[Abstract] [Full Text] [Related] [New Search]