These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Copper/zinc bimetal nanoparticles-dispersed carbon nanofibers: A novel potential antibiotic material.
    Author: Ashfaq M, Verma N, Khan S.
    Journal: Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():938-947. PubMed ID: 26652451.
    Abstract:
    Copper (Cu) and zinc (Zn) nanoparticles (NPs) were asymmetrically distributed in carbon nanofibers (CNFs) grown on an activated carbon fiber (ACF) substrate by chemical vapor deposition (CVD). The CVD conditions were chosen such that the Cu NPs moved along with the CNFs during tip-growth, while the Zn NPs remained adhered at the ACF. The bimetal-ACF/CNF composite material was characterized by the metal NP release profiles, in-vitro hemolytic and antibacterial activities, and bacterial cellular disruption and adhesion assay. The synergetic effects of the bimetal NPs distributed in the ACFs/CNFs resulted from the relatively slower release of the Cu NPs located at the tip of the CNFs and faster release of the Zn NPs dispersed in the ACF. The Cu/Zn-grown ACFs/CNFs inhibited the growth of the Gram negative Escherichia coli, Gram positive Staphylococcus aureus, and Methicillin resistance Staphylococcus aureus bacterial strains, with superior efficiency (instant and prolonged inhibition) than the Cu or Zn single metal-grown ACFs/CNFs. The prepared bimetal-carbon composite material in this study has potential to be used in different biomedical applications such as wound healing and antibiotic wound dressing.
    [Abstract] [Full Text] [Related] [New Search]