These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Molecular analysis of sarcomeric and non-sarcomeric genes in patients with hypertrophic cardiomyopathy. Author: Bottillo I, D'Angelantonio D, Caputo V, Paiardini A, Lipari M, De Bernardo C, Giannarelli D, Pizzuti A, Majore S, Castori M, Zachara E, Re F, Grammatico P. Journal: Gene; 2016 Feb 15; 577(2):227-35. PubMed ID: 26656175. Abstract: BACKGROUND: Hypertrophic cardiomyopathy (HCM) is a common genetic heart disorder characterized by unexplained left ventricle hypertrophy associated with non-dilated ventricular chambers. Several genes encoding heart sarcomeric proteins have been associated to HCM, but a small proportion of HCM patients harbor alterations in other non-sarcomeric loci. The variable expression of HCM seems influenced by genetic modifier factors and new sequencing technologies are redefining the understanding of genotype-phenotype relationships, even if the interpretations of the numerous identified variants pose several challenges. METHODS AND RESULTS: We investigated 62 sarcomeric and non-sarcomeric genes in 41 HCM cases and in 3 HCM-related disorders patients. We employed an integrated approach that combines multiple tools for the prediction, annotation and visualization of functional variants. Genotype-phenotype correlations were carried out for inspecting the involvement of each gene in age onset and clinical variability of HCM. The 80% of the non-syndromic patients showed at least one rare non-synonymous variant (nsSNV) and among them, 58% carried alterations in sarcomeric loci, 14% in desmosomal and 7% in other non-sarcomeric ones without any sarcomere change. Statistical analyses revealed an inverse correlation between the number of nsSNVs and age at onset, and a relationship between the clinical variability and number and type of variants. CONCLUSIONS: Our results extend the mutational spectrum of HCM and contribute in defining the molecular pathogenesis and inheritance pattern(s) of this condition. Besides, we delineate a specific procedure for the identification of the most likely pathogenetic variants for a next generation sequencing approach embodied in a clinical context.[Abstract] [Full Text] [Related] [New Search]