These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Skp1 Independent Function of Cdc53/Cul1 in F-box Protein Homeostasis.
    Author: Mathur R, Yen JL, Kaiser P.
    Journal: PLoS Genet; 2015 Dec; 11(12):e1005727. PubMed ID: 26656496.
    Abstract:
    Abundance of substrate receptor subunits of Cullin-RING ubiquitin ligases (CRLs) is tightly controlled to maintain the full repertoire of CRLs. Unbalanced levels can lead to sequestration of CRL core components by a few overabundant substrate receptors. Numerous diseases, including cancer, have been associated with misregulation of substrate receptor components, particularly for the largest class of CRLs, the SCF ligases. One relevant mechanism that controls abundance of their substrate receptors, the F-box proteins, is autocatalytic ubiquitylation by intact SCF complex followed by proteasome-mediated degradation. Here we describe an additional pathway for regulation of F-box proteins on the example of yeast Met30. This ubiquitylation and degradation pathway acts on Met30 that is dissociated from Skp1. Unexpectedly, this pathway required the cullin component Cdc53/Cul1 but was independent of the other central SCF component Skp1. We demonstrated that this non-canonical degradation pathway is critical for chromosome stability and effective defense against heavy metal stress. More importantly, our results assign important biological functions to a sub-complex of cullin-RING ligases that comprises Cdc53/Rbx1/Cdc34, but is independent of Skp1.
    [Abstract] [Full Text] [Related] [New Search]