These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Distribution of β-carotene-encapsulated polysorbate 80-coated poly(D, L-lactide-co-glycolide) nanoparticles in rodent tissues following intravenous administration.
    Author: Miyazawa T, Nakagawa K, Harigae T, Onuma R, Kimura F, Fujii T, Miyazawa T.
    Journal: Int J Nanomedicine; 2015; 10():7223-30. PubMed ID: 26664113.
    Abstract:
    PURPOSE: Biodegradable nanoparticles (NPs) composed of poly(D, L-lactide-co-glycolide) (PLGA) have attracted considerable attention as delivery systems of drugs and antioxidative compounds, such as β-carotene (BC). Intravenous (IV) administration of BC-containing PLGA-NPs (BC-PLGA-NPs) coated with polysorbate 80 (PS80) has been shown to effectively deliver BC to the brain. However, the whole-body distribution profile of BC is still not clear. Therefore, we investigated the accumulation of BC in various organs, including the brain, following IV administration of PS80-coated BC-PLGA-NPs in rats. METHODS: PS80-coated and uncoated BC-PLGA-NPs were prepared by solvent evaporation, and administered intravenously to Sprague Dawley rats at a BC dose of 8.5 mg/rat. Accumulation of BC in various organs (brain, heart, liver, lungs, and spleen) and blood plasma was evaluated by high performance liquid chromatography with ultraviolet (UV) detection, 1 hour after administration. RESULTS: We prepared PS80-coated BC-PLGA-NPs with an entrapment efficiency of 14%, a particle size of 260 nm, and a zeta potential of -26 mV. Coating with PS80 was found to result in significant accumulation of BC in the lungs, rather than in the brain and other tissues. Further, plasma levels of BC in the PS80-coated BC-PLGA-NP group were much lower than those of the uncoated BC-PLGA-NP group. CONCLUSION: Following IV administration, PS80-coated BC-PLGA-NPs are quickly transferred from plasma circulation to the lungs, rather than the brain. Significant accumulation of BC in the lungs may be useful for health-related applications.
    [Abstract] [Full Text] [Related] [New Search]