These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Enhanced antitumor effects by docetaxel/LL37-loaded thermosensitive hydrogel nanoparticles in peritoneal carcinomatosis of colorectal cancer. Author: Fan R, Tong A, Li X, Gao X, Mei L, Zhou L, Zhang X, You C, Guo G. Journal: Int J Nanomedicine; 2015; 10():7291-305. PubMed ID: 26664119. Abstract: Intraperitoneal chemotherapy was explored in clinical trials as a promising strategy to improve the therapeutic effects of chemotherapy. In this work, we developed a biodegradable and injectable drug-delivery system by coencapsulation of docetaxel (Doc) and LL37 peptide polymeric nanoparticles (Doc+LL37 NPs) in a thermosensitive hydrogel system for colorectal peritoneal carcinoma therapy. Firstly, polylactic acid (PLA)-Pluronic L35-PLA (PLA-L35-PLA) was explored to prepare the biodegradable Doc+LL37 NPs using a water-in-oil-in-water double-emulsion solvent-evaporation method. Then, biodegradable and injectable thermosensitive PLA-L64-PLA hydrogel with lower sol-gel transition temperature at around body temperature was also prepared. Transmission electron microscopy revealed that the Doc+LL37 NPs formed with the PLA-L35-PLA copolymer were spherical. Fourier-transform infrared spectra certified that Doc and LL37 were encapsulated successfully. X-ray diffraction diagrams indicated that Doc was encapsulated amorphously. Intraperitoneal administration of Doc+LL37 NPs-hydrogel significantly suppressed the growth of HCT116 peritoneal carcinomatosis in vivo and prolonged the survival of tumor-bearing mice. Our results suggested that Doc+LL37 NPs-hydrogel may have potential clinical applications.[Abstract] [Full Text] [Related] [New Search]