These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Exercise-Induced Left Ventricular Remodeling Among Competitive Athletes: A Phasic Phenomenon.
    Author: Weiner RB, DeLuca JR, Wang F, Lin J, Wasfy MM, Berkstresser B, Stöhr E, Shave R, Lewis GD, Hutter AM, Picard MH, Baggish AL.
    Journal: Circ Cardiovasc Imaging; 2015 Dec; 8(12):. PubMed ID: 26666381.
    Abstract:
    BACKGROUND: Contemporary understanding of exercise-induced cardiac remodeling is based on cross-sectional data and relatively short duration longitudinal studies. Temporal progression of exercise-induced cardiac remodeling remains incompletely understood. METHODS AND RESULTS: A longitudinal repeated-measures study design using 2-dimensional and speckle-tracking echocardiography was used to examine acute augmentation phase (AAP; 90 days) and more extended chronic maintenance phase (39 months) left ventricular (LV) structural and functional adaptations to endurance exercise training among competitive male rowers (n=12; age 18.6±0.5 years). LV mass was within normal limits at baseline (93±9 g/m(2)), increased after AAP (105±7 g/m(2); P=0.001), and further increased after chronic maintenance phase (113±10 g/m(2); P<0.001 for comparison to post-AAP). AAP LV hypertrophy was driven by LV dilation (ΔLV end-diastolic volume, 9±3 mL/m(2); P=0.004) with stable LV wall thickness (ΔLV wall thickness, 0.3±0.1 mm; P=0.63). In contrast, chronic maintenance phase LV hypertrophy was attributable to LV wall thickening (Δ LV wall thickness, 1.1±0.4 mm; P=0.004) with stable LV chamber volumes (ΔLV end-diastolic volume, 1±1 mL/m(2); P=0.48). Early diastolic peak tissue velocity increased during AAP (-11.7±1.9 versus -13.6±1.3 cm/s; P<0.001) and remained similarly increased after chronic maintenance phase. CONCLUSIONS: In a small sample of competitive endurance athletes, exercise-induced cardiac remodeling follows a phasic response with increases in LV chamber size, early diastolic function, and systolic twist in an acute augmentation phase of exercise training. This is followed by a chronic phase of adaptation characterized by increasing wall thickness and regression in LV twist. Training duration is a determinant of exercise-induced cardiac remodeling and has implications for the assessment of myocardial structure and function in athletes.
    [Abstract] [Full Text] [Related] [New Search]