These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Performance of Activity Classification Algorithms in Free-Living Older Adults.
    Author: Sasaki JE, Hickey AM, Staudenmayer JW, John D, Kent JA, Freedson PS.
    Journal: Med Sci Sports Exerc; 2016 May; 48(5):941-50. PubMed ID: 26673129.
    Abstract:
    PURPOSE: The objective of this study is to compare activity type classification rates of machine learning algorithms trained on laboratory versus free-living accelerometer data in older adults. METHODS: Thirty-five older adults (21 females and 14 males, 70.8 ± 4.9 yr) performed selected activities in the laboratory while wearing three ActiGraph GT3X+ activity monitors (in the dominant hip, wrist, and ankle; ActiGraph, LLC, Pensacola, FL). Monitors were initialized to collect raw acceleration data at a sampling rate of 80 Hz. Fifteen of the participants also wore GT3X+ in free-living settings and were directly observed for 2-3 h. Time- and frequency-domain features from acceleration signals of each monitor were used to train random forest (RF) and support vector machine (SVM) models to classify five activity types: sedentary, standing, household, locomotion, and recreational activities. All algorithms were trained on laboratory data (RFLab and SVMLab) and free-living data (RFFL and SVMFL) using 20-s signal sampling windows. Classification accuracy rates of both types of algorithms were tested on free-living data using a leave-one-out technique. RESULTS: Overall classification accuracy rates for the algorithms developed from laboratory data were between 49% (wrist) and 55% (ankle) for the SVMLab algorithms and 49% (wrist) to 54% (ankle) for the RFLab algorithms. The classification accuracy rates for SVMFL and RFFL algorithms ranged from 58% (wrist) to 69% (ankle) and from 61% (wrist) to 67% (ankle), respectively. CONCLUSIONS: Our algorithms developed on free-living accelerometer data were more accurate in classifying the activity type in free-living older adults than those on our algorithms developed on laboratory accelerometer data. Future studies should consider using free-living accelerometer data to train machine learning algorithms in older adults.
    [Abstract] [Full Text] [Related] [New Search]