These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The chronic effects of lignin-derived bisphenol and bisphenol A in Japanese medaka Oryzias latipes. Author: Li D, Chen Q, Cao J, Chen H, Li L, Cedergreen N, Xie H, Xie L. Journal: Aquat Toxicol; 2016 Jan; 170():199-207. PubMed ID: 26674368. Abstract: One of the ultimate goals of green chemistry is to produce greener and more environmentally friendly chemicals to replace the existing toxic chemicals. In this study, Japanese medaka were exposed to 1.5mg/L of bisphenol A or lignin-derived bisphenol for 60 days, and the expressions of various biochemical markers, effects on reproduction, and histopathology were evaluated. The results showed that concentrations of liver vitellogenin of LD-BP exposed males were approximately 125% higher compared to the control males. Total number of eggs from the BPA and LD-BP exposed fish was approximately 47% (p<0.001) and 25% (p<0.05) less than the control fish, respectively. Total number of brood was lower from the BPA (46%, p<0.05) and LD-BP (17%, p<0.05) exposed fish than that of the control fish. Relative to the control fish, catalase and glutathione-S-transferase were significantly affected by the two chemicals in all tested tissues. BPA and LD-BP caused lipid peroxidation in all the tested tissues. Furthermore, acetylcholinesterase and α-glucosidase activity were significantly inhibited. Histopathological analysis showed that both the testis and ovary were mildly damaged by both chemicals. LD-BP affected medaka slightly more severe than BPA except on the reproduction, which was most likely due to different uptake, translocation, binding to targets and metabolism. Our results demonstrated that chronic exposure to both chemicals caused several adverse effects to medaka. Further research on the toxicity of LD-BP to other aquatic organisms is needed before substitution of traditional BPA with LD-BP can be recommended.[Abstract] [Full Text] [Related] [New Search]