These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Identification and characterization of toxins in the venom gland of the Chinese bird spider, Haplopelma hainanum, by transcriptomic analysis.
    Author: Cheng TC, Long RW, Wu YQ, Guo YB, Liu DL, Peng L, Li DQ, Yang DW, Xu X, Liu FX, Xia QY.
    Journal: Insect Sci; 2016 Jun; 23(3):487-99. PubMed ID: 26678257.
    Abstract:
    Tarantula venoms provide a model system for studying toxin selectivity, structure-activity relationships and molecular evolution of peptide toxins. Previous studies have identified a large number of peptide toxins in the venom of the Chinese bird spider Haplopelma hainanum, generally regarded as a highly venomous spider. However, the lack of available RNA-seq transcriptomic and genomic data is an obstacle to understanding its venom at the molecular level. In this study, we investigated the venom gland transcriptome of H. hainanum by RNA-seq, in the absence of an available genomic sequence. We identified 201 potential toxins among 57 181 de novo assembled transcripts, including knottins, Kunitz-type toxins, enzymes and other proteins. We systematically identified most of the knottins and Kunitz-type toxins, some of which showed strongly biased expression in the venom gland, including members of the huwentoxin-1, huwentoxin-2 and magi-1 families. We also discovered several novel potential toxins. These data demonstrate the high molecular and structural diversity in the venom toxins of H. hainanum. This study offers a useful strategy for exploring the complex components of spider venoms.
    [Abstract] [Full Text] [Related] [New Search]