These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis.
    Author: Gupta J, Mohapatra J, Bhargava P, Bahadur D.
    Journal: Dalton Trans; 2016 Feb 14; 45(6):2454-61. PubMed ID: 26685824.
    Abstract:
    Polyacrylic acid functionalized Fe3O4 nanoparticles (PAA-MNPs) of average size of 10 nm are prepared by a simple soft chemical approach. These PAA-MNPs are conjugated with folic acid through peptide bonding between the carboxylic group on the surface of PAA-MNPs and the amine group of folic acid. The good colloidal stability of FA conjugated MNPs makes it a promising candidate for targeted drug delivery, hyperthermia and as a MRI contrast agent with a transverse relaxivity R2 value of 105 mM(-1) s(-1). Folic acid conjugated magnetic nanoparticles (FA-MNPs) achieved ∼ 95% loading efficiency of doxorubicin (DOX) which could be due to strong electrostatic interaction of highly negatively charged FA-MNPs and the positively charged DOX. The drug release study shows a pH-dependent behavior and is higher in acidic pH (4.3 and 5.6) as compared to the physiological pH (7.3). Flow cytometry and confocal microscopic image analysis reveal that around 75-80% of HeLa cells undergo apoptosis due to DNA disintegration upon incubation with DOX-MNPs for 24 h. DOX-MNPs exhibit the synergistic effect due to the combination of DOX induced apoptosis and magnetic hyperthermia treatment (MHT) which enhance the cell death ∼ 95.0%. Thus, this system may serve as a potential pH sensitive nanocarrier for synergistic chemo-thermal therapy as well as a possible MRI contrast agent.
    [Abstract] [Full Text] [Related] [New Search]