These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: P21(Waf1/Cip1) plays a critical role in furazolidone-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation.
    Author: Deng S, Tang S, Dai C, Zhou Y, Yang X, Li D, Xiao X.
    Journal: Food Chem Toxicol; 2016 Feb; 88():1-12. PubMed ID: 26687534.
    Abstract:
    Furazolidone (FZD), a synthetic nitrofuran with a broad spectrum of antimicrobial activities, has been shown to exhibit marked genotoxity and cytotoxicity in vitro, but the proper mechanism was unclear. P21(Waf1/Cip1) (p21), a cyclin-dependent kinase, is critically involved in cell cycle arrest and apoptosis in response to DNA injury. This study was aimed to explore the role of p21 in FZD-induced apoptosis in HepG2 cells and uncover its possible mechanism. Firstly, we demonstrated that FZD (50 μg/mL) treatment increased the mRNA level of p21 but reduced the protein level of p21 by shortening its half-life. Moreover, the degradation of p21 was associated with the inhibition of PI3K/Akt pathway by FZD. Then, the change of p21 protein expression modulated FZD-induced apoptosis. Overexpression of p21 attenuated FZD-induced caspase-3 activation and ROS generation, eventually reduced apoptosis. Conversely, knockdown of p21 by siRNA enhanced FZD-induced those phenomenon. In addition, the influence of p21 on FZD-induced ROS generation might be associated with Nrf2/HO-1 pathway which was a key regulator in defense response against oxidative stress. In conclusion, these findings demonstrated that p21 plays a critical role in FZD-induced apoptosis in HepG2 cells through influencing the caspase-3 activation and ROS generation.
    [Abstract] [Full Text] [Related] [New Search]